Jaime Madrigano, ScD, MPH The Earth Institute Columbia University

Vulnerability to Heat-Related Mortality in New York City

Public Health Burden of Heat

- On average, heat kills more people every year than any other natural disaster in the United States
 - ~ 700 deaths in 1995 Chicago heat wave
- As a result of climate change
 - Increased temperatures
 - More frequent extreme temperature days

Heat-Related Mortality in NYC

- In 2006, approximately 140 excess deaths due to heat
- Why is understanding vulnerability important?
 - During heat waves, emergency management plans include opening cooling centers and increasing outreach to <u>at-risk</u> populations.
 - Urban planning initiatives (e.g. 1 million trees)
- Previous studies have mapped 'expected' vulnerability factors in NYC, but have not linked them with actual health outcome data.

- Case-Only Design
 - A way to assess how a characteristic that does not vary over time modifies the effect of a timevarying exposure
 - If a characteristic increases the risk of dying on hotter days, the proportion of deaths with that characteristic will be higher on hotter days

- Study Population
 - All decedents (cases) who are residents of New York
 City, 2000 2011
 - Non-external causes of death
 - May September
 - n = 236,630

Exposure

- Heat wave days
 - Ambient temperature measured at LaGuardia airport
 - Days when either the maximum temperature or heat index > 95°F for at least two consecutive days
 - Two days following heat wave

Modifiers

- Gender, race, age, dying at home
- Underlying cause of death
 - Diabetes
 - Cardiovascular disease
 - Myocardial infarction
 - Congestive heart failure
 - Chronic obstructive pulmonary disease (COPD)
- Census tract of residence
 - Built space
 - Trees, grass, shrubs
 - % Families receiving public assistance
 - Relative daytime and nighttime temperature
 - Traffic density
 - Non-English speaking

- Statistical Analysis
 - Classic Poisson regression model

 $Log(E(Y_t)) = \beta_0 + \beta_1 Heatwave + \beta_2 Diabetes + \beta_3 Heatwave * Diabetes + otherstuff$

- Statistical Analysis
 - Classic Poisson regression model

$$Log(E(Y_t)) = \beta_0 + \beta_1 Heatwave + \beta_2 Diabetes - \beta_3 Heatwave * Diabetes + otherstuff$$

 β3 is the parameter of interest to look at effect modification (e.g. susceptibility by diabetes status)

 If heatwave=o and diabetes=o the overall number of cases expected over the course of the study is

$$\sum_{t} \exp(\beta_0 + otherstuff) = k_0$$

If heatwave=1 and diabetes=0 it is

$$\sum_{t} \exp(\beta_0 + \beta_1 heatwave + otherstuff) = k_1$$

 If heatwave=o and diabetes=1 the overall number of cases expected over the course of the study is

$$\sum_{t} \exp(\beta_0 + \beta_2 + otherstuff) = k_0 \exp(\beta_2)$$

If heatwave=1 and diabetes=1 it is

$$\sum_{t} \exp(\beta_0 + \beta_1 heatwave + \beta_2 + \beta_3 + otherstuff) = k_1 \exp(\beta_2 + \beta_3)$$

Therefore:

	Diabetes		
		0	1
Heat Wave	0	k ₀	$k_0 \exp(\beta_2)$
	1	k ₁	$k_1 \exp(\beta_2 + \beta_3)$

Odds Ratio

Therefore:

	Diabetes		
		0	1
Heat Wave	0	k ₀	$k_0 \exp(\beta_2)$
	1	k ₁	$k_1 \exp(\beta_2 + \beta_3)$

Odds Ratio = $k_1 \exp(\beta_2 + \beta_3)/k_1/k_0 \exp(\beta_2)/k_0$

Therefore:

	Diabetes		
		0	1
Heat Wave	0	k ₀	$k_0 \exp(\beta_2)$
	1	k ₁	$k_1 \exp(\beta_2 + \beta_3)$

Odds Ratio = $k_1 \exp(\beta_2 + \beta_3)/k_1/k_0 \exp(\beta_2)/k_0 = \exp(\beta_3)$

Therefore:

	Diabetes		
		0	1
Heat Wave	0	k ₀	$k_0 \exp(\beta_2)$
	1	k ₁	$k_1 \exp(\beta_2 + \beta_3)$

Odds Ratio = $k_1 \exp(\beta_2 + \beta_3)/k_1/k_0 \exp(\beta_2)/k_0 = \exp(\beta_3)$

$$\log it(diabetes = 1) = \beta_0 + \beta_3 HeatWave$$

Therefore:

	Diabetes		
		0	1
Heat Wave	0	k ₀	$k_0 \exp(\beta_2)$
	1	k ₁	$k_1 \exp(\beta_2 + \beta_3)$

- Odds Ratio = $k_1 \exp(\beta_2 + \beta_3)/k_1/k_0 \exp(\beta_2)/k_0 = \exp(\beta_3)$ $\log it(diabetes = 1) = \beta_0 + \beta_3 HeatWave$
- We can use a logistic regression predicting presence of the modifier (in cases) to obtain the parameter of interest!

Relative odds of dying during a heat wave for persons who had the characteristic compared with persons who did not

Relative odds of dying during a heat wave for persons who lived in a census tract with higher levels of the characteristic compared with persons who did not

Relative odds of dying during a heat wave for persons who lived in a census tract with higher levels of the characteristic compared with persons who did not

Conclusions

- In the last decade in NYC, increased vulnerability to heat-related mortality in:
 - Black race
 - Persons dying at home
 - Individuals dying of cardiovascular disease and congestive heart failure
 - Persons living in areas receiving greater public assistance
- Spatial variability in surface temperature predicts heat-related mortality
- Urban 'greening' initiatives may offer protection against heat-related mortality

Acknowledgements

- New York City Department of Health and Mental Hygiene (NYC DOHMH), Bureau of Environmental Surveillance and Policy
 - Thomas Matte
 - Kazuhiko Ito
 - Grant Pezeshki
 - Sarah Johnson
- Columbia University
 - Patrick Kinney