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The Problem

Lidar requires a high signal-to-noise ratio to measure scattered
laser pulses against the atmospheric and electronic backgrounds.

Noise Considerations

Inversion process causes noise to become non-linear and
non-stationary

Sources of noise are difficult to completely eliminate.

Inadequate Solutions

Statistical methods work against lidar’s strengths by
degrading resolution.

Signal processing methods of denoising attempt to rebuild the
signal instead of removing noise.
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HU Lidar

HU Configuration
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HU Lidar

Lidar Equation

P(R) = C

[
O(R)

R2

]
β(R) exp

{
−2

∫ R

0
α(r) dr

}
[Fernald et al., 1972]

Performance - SNR Concerns

Decreasing power with increasing range

Decreasing scatterer densities with increasing range

Sources of Noise

Poisson (Counting) Errors

Solar Background
Electrical/System noise (as above)
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Inversion

Fernald Inversion (Aerosol Extinction/Backscatter)
[Fernald et al., 1972; Klett, 1981; Sasano et al., 1985]

Differential Equation solution to the lidar equation

βa(R) = −βm(R) +
X (R) exp

{
−2

∫ R
R0

[La(R)−Lm]βm(r) dr
}

X (R0)
βa(R0)+βm(R0)

−2
∫ R
R0

La(r)X (r)T (R0,r)

Limitations

Requires a reference altitude of known backscatter coefficient
or backscatter ratio. (1%Error→ x10 [Russell et al., 1979])

Noise becomes a non-stationary with a near-linear dependency
on range. (Logarithmic R2 dependency [Klett, 1981])

Integration is more stable in the backwards direction than
forward [Sasano et al., 1985]
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Inversion
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Inversion

Kevin Leavor



Intro Overview Methods Results Conclusion Thanks ReferencesLidar Inversion EMD

EMD

20 July 2011
532 nm Signal EMD
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EMD

EMD Sifting Process

Produce basis functions via an intuitive, direct, a posteriori, and
adaptive technique. [Huang et al., 1998]
Assumptions

The signal has at least two extrema (Maximum + Minimum)

The characteristic time scale is defined by the time lapse
between the extrema

If the data are devoid of extrema, containing only inflection
points, differentiation will reveal extrema.

Stopping Criteria

SD =
T∑
t=0

[∣∣h1(k−1)(t)− h1k(t)
∣∣2

h2
1(k−1)(t)

]

Kevin Leavor



Intro Overview Methods Results Conclusion Thanks ReferencesLidar Inversion EMD

EMD

EMD Denoising

Current application to lidar is rudimentary [Liu et al., 2008;
Wu et al., 2006; Zhang et al., 2010; Zhao and Colony, 2001].

The first set of IMFs are discarded as completely noise.

Cutoff may be arbitrary or determined via power spectra.

Filtering (Savitzky-Golay) may be applied instead of directly
discarding IMFs.
Direct thresholding as in wavelet has also been applied
[Boudraa, 2004; Gong et al., 2011].

Limitations

Discarding IMFs can lead to loss of structure or introduction
of oscillations.

Reconstructing a non-periodic signal with periodic
components.

Direct thresholding on continuous IMFs introduces errors.
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Methods

EMD Thresholding [Donoho and Johnstone, 1994; Kopsinis and
McLaughlin, 2008]

Each IMF is denoised using a thresholding technique.

Thresholding is applied based on the interval between zero
crossings

Signal is suppressed by a thresholding parameter (τ) if outside ±τ ,
and zeroed otherwise (Soft-T).

Similar to wavelet thresholding; Interval scaled accordingly.
Since IMFs are continuous function, any extrema outside the
threshold preserves the points inside the threshold (Interval
Thresholding) [Kopsinis and McLaughlin, 2008].

Denoised signal is generated from the sum of the denoised IMFs.
(S∗(t) =

∑
c∗i (t))

Note: S(t) =
∑

ci (t).

Preserves major, yet highly localized, features in noise (high
frequency) components.
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EMD Thresholding

EMD-CIIT [Kopsinis and McLaughlin, 2009]

EMD acts as a dyadic filter, so first IMFs contain almost all of
the noise [Flandrin et al., 2004].

Virtually resample the signal by randomly circulating the 1st

noise-dominant IMF with a reconstruction from the remaining
denoised IMFs. Think Bootstrapping!

Perform EMD on each resample and average for a potentially
better signal estimate.

Filter using wavelet before permutation since first IMF might
contain information (thin aerosol/cloud layers).
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Test Cases

Modeled Signal

Generate base signal using lidar equation and normalize to
maximum of 100.

Only include molecular scattering from U. S. Standard
Atmosphere 1976 [NOAA, 1976]

3 Gaussians added to simulate aerosol/cloud features

Add noise with µ = 0, σ = 0.1% max[P(R)]

Measured Signal

532 nm signal from 20 July 2011 at 13:41:42 EST

20 July 2011 1064 and 532 nm Aerosol Extinction Coefficients

19–20 April 2012 Raman Temperature Profiles

21 April 2012 1064 and 532 nm PBL Heights
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Test Cases
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Test Cases
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Results - Simulated Signal Tests
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Results - Simulated Signal Tests
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Results - Simulated Signal Tests

2-Sample Anderson-Darling p-Values: Injected Noise vs. Traditionally Removed Noise for Modeled Signal
Technique

Mean2 Mean4 WV4 WV6 WV8
pAD 0.00 0.00 0.09 0.12 0.12

2-Sample Anderson-Darling

Hard-Thresholded EMD-IT passes for τmult ∈ [0.5, 1.5]

Some dependence on Nsifts with best results between 15–17

Soft-Thresholded EMD-IT passes beginning at τmult = 0.4 to
variably between 0.5–0.9.

Hard-Thresholded EMD-CIIT passes unifromly from τmult ∈ [0.6, 1.5]

Soft-Thresholded EMD-CIIT passes from τmult = 0.4 to 1.1–1.3.

No significant dependence on Nsifts. Significant gains from
Ncirc converging quickly after 80.
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Results - 532 nm Signal Tests
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Results - 532 nm Signal Tests

1-Sample p-Values: Injected Noise vs. Traditionally Removed Noise for 20 July 2012 532 nm Signal
Technique

Mean2 Mean4 WV4 WV6 WV8

pAD 0 0 1.330× 10−20 9.412× 10−18 6.446× 10−12

pSW 3.701× 10−90 5.492× 10−90 1.207× 10−22 6.350× 10−22 1.453× 10−18

1-Sample Anderson-Darling and Shapiro-Wilk Tests

Hard-Thresholded EMD-IT has no consistent values between tests.

Soft-Thresholded EMD-IT passes consistently for τmult = 0.4.

Hard-Thresholded EMD-CIIT passes unifromly from τmult ≥ 0.7 and
Nsifts ≥ 15

Soft-Thresholded EMD-CIIT passes from τmult ∈ [0.3, 0.4].
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Results - 20 July 2011 Aerosol Extinction

Kevin Leavor



Intro Overview Methods Results Conclusion Thanks References

Results - 20 July 2011 Aerosol Extinction
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Results - 20 July 2011 Aerosol Extinction
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Results - 20 July 2011 Aerosol Extinction
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Results - 20 July 2011 Aerosol Extinction
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Results - 20 July 2011 Aerosol Extinction
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Results - 20 July 2011 Aerosol Extinction
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Results - 20 July 2011 Aerosol Extinction
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Results - 20 July 2011 Aerosol Extinction
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Results - 20 July 2011 Aerosol Extinction
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Results - 20 July 2011 Aerosol Extinction
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Results - 20 July 2011 Aerosol Extinction
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Results - 20 July 2011 Aerosol Extinction
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Results - 20 July 2011 Aerosol Extinction
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Results - 20 July 2011 Aerosol Extinction

Noise-Reduction Statistics for Denoised 1064 nm Range-Corrected Signal and Aerosol
Extinction Coefficients on 20 July 2011 13:41:42

Method σX %Err,X σα %Err,α rfull,X rfull,α rstrat,X rstrat,α
Base 1.71e+06 32.36% 5.67e-07 46.27% 1.0000 1.0000 1.0000 1.0000
Avg15 — — — — 0.9883 0.9838 0.8594 0.8528
Avg30 — — — — 0.9764 0.9688 0.8355 0.8277
Avg60 — — — — 0.9703 0.9641 0.8138 0.8043
DB4 3.52e+05 5.87% 1.08e-07 7.86% 0.9969 0.9950 0.7896 0.7730
DB6 3.72e+05 8.80% 1.60e-07 15.98% 0.9968 0.9946 0.7691 0.7587
DB8 2.11e+05 4.39% 1.27e-07 10.14% 0.9967 0.9946 0.7590 0.7444
IT 3.65e+05 7.04% 1.20e-07 9.85% 0.9972 0.9955 0.8100 0.8009
CIIT 2.73e+05 5.19% 9.21e-08 7.53% 0.9972 0.9955 0.8128 0.8038

1 EMD performs at least as well as Wavelet noise reduction for overall signal

2 EMD outperforms wavelet and is comparable to long temporal averages for the
stratospheric layer.

Kevin Leavor



Intro Overview Methods Results Conclusion Thanks References

Results - 20 July 2011 Aerosol Extinction

Noise-Reduction Statistics for Denoised 532 nm Range-Corrected Signal and Aerosol
Extinction Coefficients on 20 July 2011 13:41:42

Method σX %Err,X σα %Err,α rfull,X rfull,α rstrat,X rstrat,α
Base 1.51e+06 21.60% 4.48e-07 29.10% 1.0000 1.0000 1.0000 1.0000
Avg15 — — — — 0.9906 0.9879 0.7971 0.7934
Avg30 — — — — 0.9375 0.9299 0.7075 0.7018
Avg60 — — — — 0.9777 0.9722 0.7733 0.7691
DB4 2.59e+05 3.51% 5.70e-08 3.68% 0.9976 0.9963 0.6737 0.6671
DB6 1.96e+05 3.10% 5.37e-08 3.90% 0.9975 0.9962 0.6571 0.6539
DB8 2.60e+05 3.99% 6.62e-08 4.28% 0.9974 0.9959 0.6447 0.6383
IT 3.67e+05 5.27% 1.17e-07 7.66% 0.9978 0.9968 0.7462 0.7414
CIIT 2.95e+05 4.24% 7.75e-08 5.03% 0.9979 0.9968 0.7422 0.7369

1 EMD (esp. CIIT) performs comparably to wavelet in reducing signal σ

2 EMD outperforms wavelet and is comparable to long temporal averages for the

stratospheric layer.

Particularly true for stratospheric layer.
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Conclusion I

Appropriate values for EMD-based denoising have been
determined

τmult ∈ [0.3, 0.5] for Soft Thresholding
τmult ∈ [0.7, 1.1] for Hard Thresholding
Nsifts only significant for IT, ≈ 16 ideal.
Small Ncirc for CIIT shows significant benefits (< 100). More
siftings provides smoother signal.

EMD-based denoising performs at least as well as traditional
techniques

Higher SNR
Lower errors
Higher resolution than averaging and wavelet.

EMD-based denoising introduces fewer artifacts into the
resulting signal
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Conclusion II

Offers potentially large benefits to incredibly low SNR signals
when combined with averaging techniques

Reduces the number of averaging bins required.

Offers the least error in removing significant physical signal
components.

Still significant work for optimizing the technique to varying
levels of signal SNR.

e.g. Raman Temperature vs. 532 nm Extinction vs. 1064 nm
Extinction
Applications to other atmospheric measurements worth
exploring.
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EMD

Empirical Mode Decomposition [Huang et al., 1998]

Decompose signal into Intrinsic Mode Functions (IMFs)

Functions whose local extrema differ from the total number of
zero crossings by at most 1, and the mean value of an
envelope enclosing those maxima and minima is 0.

Sifting Process
1 Cubic spline interpolate through maxima and minima to create

two envelopes.
2 Subtract mean of the envelopes from the signal and test result

for IMF criteria. (h1,1 = S(t)−m1,1)
3 Algorithm continues until result is an IMF. (c1 = h1,n)
4 c1 is subtracted from S(t) and the process continues on the

remainder r1.
5 Process stops when rn is an IMF or cannot be sifted into an

IMF.

IMFs represent (instantaneous) frequency components of the signal.
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Results - 19–20 April 2012 Temperature
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Results - 19–20 April 2012 Temperature

Noise-Reduction Statistics for Denoised Temperature Profiles
Measured 19–20 April 2012

Method
20 April 2012, 00:00 20 April 2012, 21:00
σT RMSE rT σT RMSE rT

Base 10.763 0.226 0.774 11.992 0.245 0.793
Avg15 10.062 0.117 0.951 9.839 0.103 0.965
Avg30 10.180 0.100 0.968 9.942 0.092 0.976
Avg60 10.117 0.085 0.978 9.773 0.071 0.985
DB4 10.026 0.101 0.959 10.064 0.104 0.967
DB6 9.936 0.104 0.959 9.979 0.098 0.968
DB8 10.130 0.104 0.962 9.882 0.104 0.960
IT 10.280 0.143 0.934 10.167 0.137 0.925
CIIT 10.242 0.114 0.958 10.107 0.111 0.962
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Results - 21 April 2012 PBL Heights
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